Photoreduction of CO_2 in the $[Ru(bpy)_2(CO)_2]^{2+}$ / $[Ru(bpy)_3]^{2+}$ or $[Ru(phen)_3]^{2+}$ / Triethanolamine / N,N-Dimethylformamide System

Hitoshi ISHIDA, Koji TANAKA, and Toshio TANAKA*

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

The $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$ / $[\mathrm{Ru}(\mathrm{bpy})_3]^{2+}$ (or $[\mathrm{Ru}(\mathrm{phen})_3]^{2+}$) / triethanolamine / N,N-dimethylformamide system reduces CO_2 to afford HCOO^- efficiently under the irradiation of light (λ > 320 nm), where each of the former three components functions as a catalyst, a photosensitizer, and an electron donor, respectively.

The reduction of CO₂ by using transition metal complexes as photosensitizers (or photocatalysts) have recently been reported. $^{1-5}$) There is, however, some confusion on the function of $[Ru(bpy)_3]^{2+}$ (bpy = 2,2'-bipyridine) in the photoreduction of CO_2 to give $HCOO^-$; $[Ru(bpy)_3]^{2+}$ was first reported to reduce CO_2 to $HCOO^-$ in the presence of methylviologen (MV $^{2+}$) in a mixture triethanolamine (TEOA) / N,N-dimethylformamide (DMF) under the irradiation of light (λ > 320 nm). $^{1)}$ Even in the absence of MV $^{2+}$, however, the photoreduction of CO $_2$ was successfully proceeded by the irradiation of visible light ($\lambda > 400$ nm) in the presence of $[Ru(bpy)_3]^{2+}$ with a high concentration (1.1 x 10^{-2} mol dm⁻³) in the same solvent system, where $[Ru(bpy)_2(CO)X]^+$ (X = H, Cl) generated by the dissociation of bpy has been suggested to function as a photocatalyst to produce $HCOO^-$ efficiently.²⁾ Moreover, the formation of $HCOO^-$ in the $[Ru(bpy)_3]^{2+}$ / MV^{2+} / TEOA / DMF system has been suggested to come from the decomposition of TEOA used as an electron donor.³⁾ We have recently reported that $[Ru(bpy)_2(CO)_2]^{2+}$ is an efficient catalyst in the electrochemical ${\rm CO_2}$ reduction. This communication reports that $[Ru(bpy)_2(CO)_2]^{2+}$ may be an efficient catalyst also for the photoreduction of CO_2 in the $[Ru(bpy)_2(CO)_2]^{2+}$ / $[Ru(bpy)_3]^{2+}$ or $[Ru(phen)_3]^{2+}$

1036 Chemistry Letters, 1987

(phen = 1,10-phenanthroline) / TEOA / DMF system, where $[Ru(bpy)_3]^{2+}$ or $[Ru(phen)_3]^{2+}$ functions only as a photosensitizer.

Photoreduction of CO_2 was conducted in a septum-capped pyrex tube by irradiating light (λ > 320 nm; a 300 W-Hg lamp equipped with a $CuSO_4$ chemical filter) for 20 h to a CO_2 -saturated TEOA/DMF (1:4 v/v, 5 cm³) solution containing a given amount of either $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$ or $[Ru(bpy)_2(CO)_2](PF_6)_2$, or both of them. The reaction products in the liquid and gaseous phases were analyzed by a Shimadzu IP-2A isotachophoretic analyzer and a Shimadzu GC-3BT gaschromatograph, respectively.

The photoreduction of CO_2 in a CO_2 -saturated TEOA/DMF in the presence of a low concentration (5.0 x 10^{-4} mol dm⁻³) of $[Ru(bpy)_3]^{2+}$ yields a small amount of HCOO⁻ (Eq. 1, entry 1 in Table 1). The addition of $[Ru(bpy)_2(CO)_2]^{2+}$ to the

$$CO_2 + H^+ + 2e^- \longrightarrow HCOO^-$$
 (1)

solution of $[Ru(bpy)_3]^{2+}$, however, results in a drastic increase of HCOO⁻ (entries 2 - 5), with the concomitant production of trace amounts of CO and H₂ (Eqs. 2 and 3). On the other hand, no photoreduction of CO₂ occurs in the presence of only

$$CO_2 + 2H^+ + 2e^- \longrightarrow CO + H_2O$$
 (2)

$$2H^{+} + 2e^{-} \longrightarrow H_{2}$$
 (3)

 $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$ (entry 6), which exhibits no electronic absorption band in the visible region.⁸⁾ Thus, $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$ and $[\mathrm{Ru}(\mathrm{bpy})_3]^{2+}$ (λ_{max} : 452 nm) may function as an efficient catalyst and a photosensitizer, respectively, in the photoreduction of CO_2 . This assumption is consistent with the facts that (i) the amount of HCOO^- formed in the reduction of CO_2 for a given time increases with increasing the amount of $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$ in the presence of a given concentration of $[\mathrm{Ru}(\mathrm{bpy})_3]^{2+}$ (entries 2 - 5), while the turnover number for the formation of $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$ increases with decreasing the concentration of $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$ to attain 3580 with its low concentration (entry 2), and (ii) the photoreduction of CO_2 similarly proceeded in CO_2 -saturated $\mathrm{TEOA/DMF}$ (1:4 v/v) containing both $[\mathrm{Ru}(\mathrm{bpy})_2(\mathrm{CO})_2]^{2+}$ (5.0 x 10^{-4}

Table 1. Reduction of CO_2 in the $[Ru(bpy)_2(CO)_2]^{2+}$ / $[Ru(bpy)_3]^{2+}$ / TEOA / DMF system by irradiation of the light $\lambda > 320$ nm for 20 h

Entry	Concentration / mol dm ⁻³			Turnover numbera)
	[Ru(bpy) ₂ (CO) ₂] ²⁺	[Ru(bpy) ₃] ²⁺	HCOO / µmol	based on [Ru(bpy) ₂ (CO) ₂] ²⁺
1	0	5.0×10^{-4}	7	
2	1.0×10^{-5}	5.0×10^{-4}	186	3580
3	5.0×10^{-5}	5.0×10^{-4}	258	1004
4	1.0×10^{-4}	5.0×10^{-4}	315	616
5	5.0×10^{-4}	5.0×10^{-4}	394	155
6	5.0×10^{-4}	0	0	0

a) { μ mol of HCOO⁻ produced in the presence of [Ru(bpy)₂(CO)₂]²⁺ - 7 μ mol} { μ mol of [Ru(bpy)₂(CO)₂]²⁺}

mol dm⁻³) and $[Ru(phen)_3]^{2+}$ (5.0 x 10⁻⁴ mol dm⁻³) to yield HCOO⁻ (139 µmol for 20 h); the latter Ru complex has been reported to exhibit no catalytic activity in the photoreduction of CO_2 .²)

The $^{13}\text{C-NMR}$ spectrum of the reaction mixture obtained after the photoreduction of $^{13}\text{CO}_2$ for 20 h in the medium TEOA/DMF/DMF-d⁷ (2:3:5 v/v) containing equal amounts of $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ and $[\text{Ru}(\text{bpy})_3]^{2+}$ (5.0 x 10⁻⁴ mol dm⁻³), showed an H¹³COO⁻ signal at δ 168.1, and the amount determined from the signal intensity of the $^{13}\text{C-NMR}$ spectrum was consistent with that determined by the isotachophoretic analysis, suggesting that the formation of HCOO⁻ does not arise from the decomposition of TEOA.

The photoreduction of ${\rm CO}_2$ may be initiated by the formation of a luminescent state $[{\rm Ru}({\rm bpy})_3]^{2+*}$, which is reductively quenched by TEOA to produce $[{\rm Ru}({\rm bpy})_3]^{+*}$ and the TEOA[‡] radical cation.⁹⁾ The redox potential of the $[{\rm Ru}({\rm bpy})_3]^{2+/+}$ couple is -1.35 V vs. SCE, 10) which is not only more negative than the potential required for the two-electron reduction of $[{\rm Ru}({\rm bpy})_2({\rm CO})_2]^{2+}$ (-0.95 V vs. SCE in CH₃CN) but also very close to the potential (-1.30 V vs. SCE) applied for the successful electrochemical ${\rm CO}_2$ reduction catalyzed by $[{\rm Ru}({\rm bpy})_2({\rm CO})_2]^{2+}$ in H₂O/DMF and MeOH⁷⁾. This suggests that the mechanism of the present photochemical ${\rm CO}_2$ reduction is essentially the same as that of the electrochemical ${\rm CO}_2$ reduction

1038 Chemistry Letters, 1987

reported previously,⁶⁾ and the proton source in the former may be either a hydroxyl proton of TEOA or a β -hydrogen (pK_a = 7.8)¹¹⁾ of TEOA[†].

It should finally be mentioned that $[Ru(bpy)_2(CO)C1]^+$ as a possible impurity involved in $[Ru(bpy)_3]^{2+}$ may cause a puzzulling situation in understanding the mechanism of CO_2 reductions with $[Ru(bpy)_3]^{2+}$ as a photosensitizer since not only the impurity is almost inevitable in $[Ru(bpy)_3]^{2+}$ prepared from $RuCl_3 \cdot nH_2O$ and 2,2'-bipyridine by refluxing in MeOH or DMF^{12}) but also it is an efficient catalyst in the electrochemical CO_2 reduction. Such any catalytically active species as $[Ru(bpy)_2(CO)X]^+$ (X = H, Cl) may be photochemically generated from $[Ru(bpy)_3]^{2+}$ in $TEOA/DMF.^2$)

The present work was supported by General Sekiyu Research and Development Encouragement and Assistance Foundation.

References

- 1) N. Kitamura and S. Tazuke, Chem. Lett., 1983, 1109.
- 2) J. Hawecker, J. M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun., 1985, 56.
- 3) H. Kase, T. Iida, K. Yamane, and T. Mitamura, Denki Kagaku, 54, 437 (1986).
- 4) R. Ziessel, J. Hawecker, and J. M. Lehn, Helv. Chim. Acta., 69, 1065 (1986).
- 5) J. M. Lehn and R. Ziessel, Proc. Natl. Acad. Sci. U. S. A., <u>79</u>, 701 (1982); J. Hawecker, J. M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun., <u>1983</u>, 536; C. Kutal, M. A. Weber, G. Ferraudi, and D. Geiger. Organometallics, <u>4</u>, 2161 (1985); R. Maidan and I. Willner, J. Am. Chem. Soc., 108, 8100 (1986).
- 6) H. Ishida, K. Tanaka, and T. Tanaka, Organometallics, <u>6</u>, 181 (1987); Chem. Lett., <u>1985</u>, 405.
- 7) H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Soc., Chem. Commun., 1987, 131.
- 8) H. Ishida, K. Tanaka, M. Morimoto, and T. Tanaka, Organometallics, <u>5</u>, 724 (1986).
- 9) The quenching rate constant was reported as $1.7 \times 10^5 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$, and $[\text{Ru(bpy)}_3]^{2+*}$ was not quenched by $[\text{Ru(bpy)}_2(\text{CO)}_2]^{2+}$ in DMF. Decomposition products of TEOA[‡] were identified as diethanolamine and hydroxyacetaldehyde.²⁾
- 10) R. Ballardini, G. Varani, M. T. Indelli, F. Scandola, and V. Balzani, J. Am. Chem. Soc., <u>100</u>, 7219 (1978).
- 11) K. Kalyanasundaram, Coord. Chem. Rev., 46, 159 (1982).
- 12) D. Choudhury, R. F. Jones, G. Smith, and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans., 1982, 1143.

(Received February 14, 1987)